AHS Mathe Matura kostenlose Vorbereitung Inhaltsbereich AN 1.2
Formel
AHS Mathe Matura kostenlose Vorbereitung Inhaltsbereich AN 1.2
Änderungsmaße
AN 1.2: Den Zusammenhang Differenzenquotient (mittlere Änderungsrate) – Differentialquotient („momentane“ Änderungsrate) auf der Grundlage eines intuitiven Grenzwertbegriffes kennen und damit (verbal sowie in formaler Schreibweise) auch kontextbezogen anwenden können
Auszugsweise zitiert gemäß: Die standardisierte schriftliche Reifeprüfung in Mathematik (AHS) Stand: Februar 2021
Schon den nächsten Urlaub geplant?
Auf maths2mind kostenlos auf Prüfungen vorbereiten!
Nach der Prüfung in Ruhe entspannen

Wissenspfad
Zur aktuellen Lerneinheit empfohlenes Vorwissen
AHS Mathe Matura kostenlose Vorbereitung Inhaltsbereich AN | Analysis ist einer der 5 Inhaltebereiche der standardisierten kompetenzorientierten Reifeprüfung in Mathematik an Österreichs AHS |
Aktuelle Lerneinheit
AHS Mathe Matura kostenlose Vorbereitung Inhaltsbereich AN 1.2 | Zusammenhang Differenzenquotient und Differentialquotient |
Verbreitere dein Wissen zur aktuellen Lerneinheit
AHS Mathe Matura kostenlose Vorbereitung Inhaltsbereich AN 3.3 | Monotonie, lokale Extrema, Krümmung und Wendestellen von Funktionen kennen |
AHS Mathe Matura kostenlose Vorbereitung Inhaltsbereich AN 3.2 | Zusammenhang zwische Funktion und Ableitungsfunktion in deren grafischer Darstellung kennen |
AHS Mathe Matura kostenlose Vorbereitung Inhaltsbereich AN 3.1 | Die Begriffe Ableitungs- und. Stammfunktion kennen |
AHS Mathe Matura kostenlose Vorbereitung Inhaltsbereich AN 2.1 | Einfache Regeln des Differenzierens anwenden können |
AHS Mathe Matura kostenlose Vorbereitung Inhaltsbereich AN 1.4 | Systemdynamisches Verhalten von Größen durch Differnezengleichungen beschreiben und im Kontex deuten |
AHS Mathe Matura kostenlose Vorbereitung Inhaltsbereich AN 1.3 | Sachverhalte durch den Differenzen- bzw. Differentialquotienten beschreiben können |
AHS Mathe Matura kostenlose Vorbereitung Inhaltsbereich AN 1.1 | Absolute und relative Änderungsmaße |
AHS Mathe Matura kostenlose Vorbereitung Inhaltsbereich AN 4.3 | Das bestimmte Integral in verschiedenen Kontexten deuten können |
AHS Mathe Matura kostenlose Vorbereitung Inhaltsbereich AN 4.2 | Einfache Regeln für das unbestimmte Integrieren kennen |
AHS Mathe Matura kostenlose Vorbereitung Inhaltsbereich AN 4.1 | Das bestimmte Integral als Grenzwert der Summe von Produkten kennen |
Aufgaben zu diesem Thema
Aufgabe 1746
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Mathematik
Quelle: AHS Matura vom 14. Jänner 2020 - Teil-1-Aufgaben - 13. Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Differenzenquotient und Differenzialquotient
Nachstehend ist der Graph einer Polynomfunktion f zweiten Grades abgebildet. Zusätzlich sind vier Punkte auf dem Graphen mit den x-Koordinaten x1, x2, x3 und x4 eingezeichnet.
Aufgabenstellung:
Kreuzen Sie die beiden auf die Funktion f zutreffenden Aussagen an. [0 / 1 Punkt]
- Aussage 1: Der Differenzenquotient für das Intervall [x1; x2] ist kleiner als der Differenzialquotient an der Stelle x1.
- Aussage 2: Der Differenzenquotient für das Intervall [x1; x3] ist kleiner als der Differenzialquotient an der Stelle x3.
- Aussage 3: Der Differenzenquotient für das Intervall [x1; x4] ist kleiner als der Differenzialquotient an der Stelle x2.
- Aussage 4: Der Differenzenquotient für das Intervall [x2; x4] ist größer als der Differenzialquotient an der Stelle x2.
- Aussage 5: Der Differenzenquotient für das Intervall [x3; x4] ist größer als der Differenzialquotient an der Stelle x4.
Aufgabe 1143
AHS - 1_143 & Lehrstoff: AN 1.2
Quelle: Aufgabenpool für die SRP in Mathematik (12.2015)
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Luftwiderstand
Der Luftwiderstand FL eines bestimmten PKWs in Abhängigkeit von der Fahrtgeschwindigkeit v lässt sich durch folgende Funktionsgleichung beschreiben \({F_L}\left( v \right) = 0,4 \cdot {v^2}\) . Der Luftwiderstand ist dabei in Newton (N) und die Geschwindigkeit in Metern pro Sekunde (m/s) angegeben.
Aufgabenstellung:
Berechnen Sie die mittlere Zunahme des Luftwiderstandes in \(\dfrac{N}{{m/s}}\) bei einer Erhöhung der Fahrtgeschwindigkeit von 20 m/s auf 30 m/s!
Aufgabe 1176
AHS - 1_176 & Lehrstoff: AN 1.2
Quelle: Aufgabenpool für die SRP in Mathematik (12.2015)
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Bewegung eines Körpers
Bei der Bewegung eines Körpers gibt die Zeit-Weg-Funktion seine Entfernung s (in m) vom Ausgangspunkt seiner Bewegung nach t Sekunden an.
Der Differenzenquotient \(\dfrac{{s\left( {{t_2}} \right) - s\left( {{t_1}} \right)}}{{{t_2} - {t_1}}}\) gibt seine mittlere Geschwindigkeit im Zeitintervall \(\left[ {{t_1};{t_2}} \right]\) an.
Aufgabenstellung:
Ergänzen Sie die Textlücken im folgenden Satz durch Ankreuzen der jeweils richtigen Satzteile so, dass eine korrekte Aussage entsteht!
Der Ausdruck \({\lim _{{t_2} \to {t_1}}}\dfrac{{s\left( {{t_2}} \right) - s\left( {{t_1}} \right)}}{{{t_2} - {t_1}}}\) gibt die ______1______ ______2______ an.
1 | |
Momentangeschwindigkeit | A |
Momentanbeschleunigung | B |
durchschnittliche Beschleunigung | C |
2 | |
zwischen den Zeitpunkten t1 und t2 | I |
zum Zeitpunkt t1 | II |
zum Zeitpunkt t2 | III |
Aufgabe 1650
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Mathematik
Quelle: AHS Matura vom 20. September 2018 - Teil-1-Aufgaben - 13. Aufgabe
Quelle: Distance-Learning-Check vom 15. April 2020 - Teil-1 Aufgaben - 14. Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Wasserstand eines Flusses
Die Funktion \(W:\left[ {0;24} \right] \to {{\Bbb R}_0}^ + \) ordnet jedem Zeitpunkt t den Wasserstand W(t) eines Flusses an einer bestimmten Messstelle zu. Dabei wird t in Stunden und W(t) in Metern angegeben.
Aufgabenstellung:
Interpretieren Sie den nachstehenden Ausdruck im Hinblick auf den Wasserstand W(t) des Flusses!
\(\mathop {\lim }\limits_{\Delta t \to 0} \dfrac{{W\left( {6 + \Delta t} \right) - \left( 6 \right)}}{{\Delta t}}\)
Schon den nächsten Urlaub geplant?
Auf maths2mind kostenlos auf Prüfungen vorbereiten!
Nach der Prüfung mit dem gesparten Geld deinen Erfolg genießen.

Aufgabe 1818
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Mathematik
Quelle: AHS Matura vom 12. Jänner 2021 - Teil-1-Aufgaben - 13. Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Messung der Geschwindigkeit
Die Geschwindigkeit eines bewegten Körpers in Abhängigkeit von der Zeit t wird durch eine differenzierbare Funktion v modelliert (t in s, v(t) in m/s). Die Messung der Geschwindigkeit v(t) beginnt zum Zeitpunkt t = 0. Betrachtet wird der Grenzwert
\(\mathop {\lim }\limits_{t \to 3} \dfrac{{v\left( t \right) - v\left( 3 \right)}}{{t - 3}}\)
Aufgabenstellung:
Kreuzen Sie die beiden Aussagen an, die den betrachteten Grenzwert richtig beschreiben.
- Aussage 1: Der Grenzwert gibt die momentane Änderungsrate der Geschwindigkeit des Körpers 3 Sekunden nach Beginn der Messung an.
- Aussage 2: Der Grenzwert gibt die durchschnittliche Geschwindigkeit des Körpers im Zeitintervall [0; 3] an.
- Aussage 3: Der Grenzwert gibt die momentane Beschleunigung des Körpers 3 Sekunden nach Beginn der Messung an.
- Aussage 4: Der Grenzwert gibt die relative Änderung der Geschwindigkeit des Körpers im Zeitintervall [0; 3] an.
- Aussage 5: Der Grenzwert gibt den vom Körper in den ersten 3 Sekunden zurückgelegten Weg an.
[0 / 1 Punkt]
Aufgabe 1794
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Mathematik
Quelle: AHS Matura vom 16. September 2020 - Teil-1-Aufgaben - 1. Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Differenzenquotient und Differenzialquotient
In der nachstehenden Abbildung ist der Graph einer Polynomfunktion 3. Grades f dargestellt:
Aufgabenstellung:
Kreuzen Sie die beiden zutreffenden Aussagen an.
- Aussage 1: Im Intervall (0; 2) gibt es eine Stelle a, sodass gilt:
\(\dfrac{{f\left( a \right) - f\left( 0 \right)}}{{a - 0}} = f'\left( 0 \right)\)
- Aussage 2: Im Intervall (4; 6) gibt es eine Stelle a, sodass gilt:
\(\dfrac{{f\left( a \right) - f\left( 0 \right)}}{{a - 0}} = f'\left( 0 \right)\)
- Aussage 3: Für alle a ∈ (0; 1) gilt: Je kleiner a ist, desto weniger unterscheidet sich
\(\dfrac{{f\left( a \right) - f\left( 0 \right)}}{{a - 0}}{\text{ von }}f'\left( 0 \right)\)
- Aussage 4: Für alle a ∈ (2; 5) gilt: Je größer a ist, desto weniger unterscheidet sich
\(\dfrac{{f\left( a \right) - f\left( 0 \right)}}{{a - 0}}{\text{ von }}f'\left( 0 \right)\)
- Aussage 5: Für alle a ∈ (2; 3) gilt:
\(\dfrac{{f\left( a \right) - f\left( 0 \right)}}{{a - 0}} > f'\left( 0 \right)\)[0 / 1 Punkt]