Anwendungen der Integralrechnung
Die Integralrechnung ist aus dem Wunsch nach der Berechnung von Flächen entstanden, die über die Flächen einfacher geometrischer Figuren mit simplen Formen hinausgehen.
- Figuren, die durch Gerade oder Kreise begrenzt werden
Für geometrische Figuren wie Dreiecke, Vielecke oder Kreise gibt es feste Formeln für die Berechnung von Umfang oder Fläche. Auch für die Oberfläche oder das Volumen von geometrischen Körpern wie Quader, Zylinder, Pyramide oder Kugel gibt es feste Formeln.
- Figuren, die durch eine Funktion begrenzt werden
Bei Flächen, die von krummlinigen Kurven, also durch Funktionen f(x) begrenzt werden, kann man die Fläche leider nicht so einfach wie beim Rechteck, mit „Länge mal Breite“ berechnen. Durch die Integralrechnung wird die Berechnung von Bogenlängen, Flächen oder Volumina von Figuren und Körpern ermöglicht, deren Begrenzungslinien allgemeine Funktionen f(x) sind.
Illustration: links die Fläche unter der Funktion f(x)=x² rechts daneben die zusammengesetzte geometrische Figur bestehend aus einem Rechteck und einem Dreieck
Produktsumme zur näherungsweisen Berechnung von Flächen
Man zerlegt geometrisch die von den Funktionen begrenzte Fläche in viele schmale parallele Streifen. Summiert man die einzelnen Flächen als das Produkt aus der „Breite vom Streifen“ mal der „Höhe vom Streifen“ über alle Streifen auf, so erhält man eine Näherung für den gesuchten Flächeninhalt.
Praktisch kann man die Streifen nach verschiedenen Kriterien auswählen: Als „Obersumme“ , als „Untersumme“, als „Mittelsumme“, als "Linkssumme“ oder als „Rechtssumme“ oder als "Trapezsumme".
Eingrenzung der exakten Fläche durch „Untersumme“ und „Obersumme“
Teilt man das Intervall \(\left[ {a;b} \right]\) in n Teile der gleichen Breite \(\Delta x = {{b - a} \over n}\), so erhält man die Untersumme als die Summe aller Rechteckstreifen unterhalb der Kurve und die Obersumme als die Summe aller Rechteckstreifen oberhalb der Kurve. Die "exakte Fläche" A, die dem bestimmten Integral entspricht, liegt für \(n \to \infty\) genau zwischen Ober- und Untersumme.
\({U_n} = \left[ {f\left( {{x_0}} \right) + f\left( {{x_1}} \right) + ... + f\left( {{x_{n - 1}}} \right)} \right] \cdot \Delta x \le A \le {O_n} = \left[ {f\left( {{x_1}} \right) + f\left( {{x_2}} \right) + ... + f\left( {{x_n}} \right)} \right] \cdot \Delta x\)
für \(n \to \infty\)
\({U_n} = \sum\limits_{i = 0}^{n - 1} {f\left( {{x_i}} \right) \cdot \Delta x \le A \le {O_n} = \sum\limits_{i = 1}^n {f\left( {{x_i}} \right) \cdot \Delta x} }\)
Obersumme
Bei der Obersumme wählt man den größten Funktionswert des betrachteten Teilintervalls als höchsten Punkt des jeweiligen Rechtecks.
Untersumme
Bei der Untersumme wählt man den niedersten Funktionswert des betrachteten Teilintervalls als höchsten Punkt des jeweiligen Rechtecks.
Wenn der Grenzwert der Untersummen gleich groß ist wie der Grenzwert der Obersummen aller Rechteckstreifen, dann ist dieser Grenzwert zugleich der Wert des bestimmten Integrals.
\({U_n} = {O_n} = \int\limits_a^b {f\left( {x\,\,dx} \right)} = A\)
Exakte Fläche durch Integration
Die "exakte Fläche" A, die dem bestimmten Integral entspricht, liegt für \(n \to \infty\) zwischen Ober- und Untersumme bzw. zwischen Links- und Rechtssumme. Die Genauigkeit der Näherung hängt nur von der Breite der Streifen ab. Je schmaler die Streifen, umso besser die Näherung des Flächeninhalts.
Eingrenzung der exakten Fläche durch „Linkssumme“, Mittelsumme" und „Rechtssumme“
Bei Funktionen deren Monotonie sich ändert (steigend, fallend) verwendet man statt der Ober- und Untersummen die Links- und die Rechtssummen.
Linkssumme
Bei der Linkssumme liegt für jedes Teilintervall der linke obere Punkt des Rechtecks auf dem Graphen der Funktion.
Mittelsumme
Bei der Mittelsumme liegt für jedes Teilintervall jeweils der Halbierungspunkt der oberen Seite des Rechtecks auf dem Graphen der Funktion.
Rechtssumme
Bei der Rechtssumme liegt für jedes Teilintervall jeweils der rechte ober Punkt des Rechtecks auf dem Graphen der Funktion.