Quadratische Funktionen (Parabeln)
Der Graph einer quadratischen Funktion ist eine Parabel. Die Parabel ist nach oben oder nach unten offen und nach links und rechts unbegrenzt. Der Punkt an dem die Parabel ihr Minimum annimmt heißt Scheitelpunkt. Die y-Achse ist die Symmetrieachse der Parabel. Es handelt sich um eine gerade Funktion, da f(x)=f(-x).
\(f\left( x \right) = a \cdot {x^2}\)
Allgemeine Form der quadratischen Funktion
Die quadratische Funktion setzt sich aus einem quadratischen, einem linearen und einem konstanten Glied zusammen. Der Parameter c heißt y-Achsenabschnitt der Parabel, die den Graph der quadratischen Funktion darstellt. Es ist dies der Schnittpunkt der Parabel mit der y-Achse, somit der Punkt \(S\left( {0\left| {{S_y}} \right.} \right)\)
\(f(x) = a \cdot {x^2} + b \cdot x + c\)
Normalform der quadratischen Funktion
Man kann durch Division durch a erzwingen, dass der Parameter a=1 wird. Dann spricht man von der Normalform der quadratischen Funktion.
\(f(x) = {x^2} + p \cdot x + q\)
Nullstellenform der quadratischen Funktion
Die Nullstellenform, auch die faktorisierte Form der quadratischen Funktion genannt, gibt es nur dann wenn die Parabel , also der Graph der quadratischen Funktion, überhaupt die x-Achse schneidet. Die quadratische Funktion in faktorisierter Form weist direkt die Nullstellen x1 bzw. x2 aus. Die Nullstellen der quadratischen Funktion findet man mit der abc Formel, die auch Mitternachtsformel genannt wird (siehe dort).
\(\eqalign{ & f\left( x \right) = a\left( {x - {x_1}} \right) \cdot \left( {x - {x_2}} \right) \cr & {x_{1,2}} = \dfrac{{ - b \pm \sqrt {{b^2} - 4ac} }}{{2a}} \cr}\)
Falls b² - 4ac >0 ist, besitzt die Gleichung 2 verschiedene reelle Lösungen., bei b² - 4ac = 0 besitzt sie eine reelle Doppellösung, sonst besitzt sie 2 konjugiert komplexe Lösungen in C.
Beispiel:
Quadratische Funktion in der allgemeinen Form mit a=1 b=0 c=0